Next-Generation Microelectronics

An Emerging Opportunity in Next-Generation Custom Microelectronics

In September of this year, after a ten-year career in public sector defense industry positions – including serving as the Director for Electronic Warfare at the Department of Defense for almost four years – I switched tracks to the private sector, joining Mercury Systems as Chief Technology Officer. Mercury Systems is revolutionizing the intersection of technology and defense, advancing leading-edge capabilities to a microelectronics industry currently guided by two prevailing themes which together pose immense opportunity.

First, silicon manufacturing and technology are evolving at breakneck speed, which in keeping with Moore’s law have simultaneously driven advancements in computing performance and decreases in cost. To date, this innovation has been most apparent in the high-tech private sector, however there is tremendous opportunity to transfer this innovation over to the public sector and to make it defense-ready. At the same time, however, industry challenges and macro-level geopolitical trends have created an environment in which secure, trusted solutions are an undisputed imperative for U.S. government agencies and defense Primes.

I believe Mercury is uniquely positioned to address these challenges, and this is one of the reasons I joined the Company. Operating in the private sector and with a wealth of experience in electronics from chip level to system level , we have the expertise and ambition to drive real innovation in microelectronics. At the same time, our legacy in servicing the defense community, combined with our Defense Microelectronics Activity-accredited (DMEA) trusted secure manufacturing capabilities, puts us in a unique position as the only commercial industry player capable of serving as an ideal conduit for bringing trusted microelectronics innovation to the public sector.

An Industry at an Inflection Point

We’re excited to be sharing our optimism for the future of public sector microelectronics with the defense community and our peers at the 2019 AUSA Annual Meeting being held this week in Washington, D.C. We’re confident – based on prevailing trends and industry attitudes – that the industry is ripe and eager for change, and we’re excited to share our first step in bringing about that change.

A Bright Future

This week, we announced a $15 million capital investment to bring next-generation trusted commercial silicon technology to the defense community. This initiative represents one of the first commercial applications of the Defense Advanced Research Projects Agency’s (DARPA) Electronics Resurgence Initiative (ERI) and directly aligns with the ERI’s stated goal of “creating a more specialized, secure, and heavily automated electronics industry that serves the needs of both the domestic commercial and defense sectors.”

This announcement and our activities at AUSA’s Annual Meeting set the stage for a bright future in microelectronics for defense applications. We look forward to translating our investment into manufacturing and implementation, and to driving further progress and innovation that matters in microelectronics for the public and private sector.


Enabling Edge Processing in Military Intelligent Sensors

In military environments, seconds can be the difference between life or death and mission success or failure. A soldier in hostile territory needs their mobile system to rapidly process sensor data to accurately analyze threats and take action. Intelligent sensor systems using artificial intelligence (AI) to make automatic critical decisions without human intervention rely on sophisticated algorithms to process sensor data real-time at the point of generation to ensure a rapid and accurate decision can be made. This real-time processing of data at the point of generation and consumption, decentralized from a data center or the cloud, is Edge Processing. Each local system or device at the “edge” is self-sufficient to collect, process, store and disseminate data into action enabling the intelligent sensor and effector mission systems our military needs to carry out daily operations. These systems that enable mobile computing and artificial intelligence could be part of an unmanned aerial vehicle (UAV),unmanned ground vehicle (UGV) or a base camp collecting surveillance data of its surroundings to warn of incoming threats.

Read More