Swap Optimized RF

Smaller, Faster & More Affordable

During a Saturday afternoon of closet organizing, I found my first laptop from 2002—a Dell Inspiron 8200. I remember paying a premium—over $2,000 I think—for the Pentium 4 processor and the 256MB of RAM. It required 4.5A at 20V (90W) and weighed 8 pounds 3 ounces, which is just slightly less than the current weight of my two-week-old daughter. While organizing my closet, I was also listening to a podcast on my $250 phone that easily fits into my pocket and is far more powerful than the old laptop.

Both consumers and defense primes are demanding increased performance, in smaller packages, at lower prices. We have come to expect this level of improvement in each new smartphone generation. Addressing new emerging threats in the defense space requires a similar advancement. In this third post of my series on the intersection of the RF commercial and defense industries, we will examine the need for products that are smaller, more capable, and less expensive. Packing more circuitry into smaller areas is no easy task and to be successful, a company must embrace innovation and modular design—the subjects of my first and second posts in this series. This applies to designing a smart phone or a radar system.

Read More

IMS 2018

IMS 2018 Re-Cap

It was a week of cheese steaks, US history, and ten thousand RF and microwave professionals. The International Microwave Symposium, or IMS, is an annual event that brings together the latest research from academia, hundreds of companies, and presentations from the most knowledgeable experts. This year we all gathered in downtown Philadelphia to learn what’s new in the industry.

Read More

Military-Grade Solid State Drives

Military-Grade Secure Solid State Drives Part 3: Diamonds are Forever; Encryption Keys Last Longer

Have you ever forgotten your password for your work laptop and had to go to your IT guy for help to reset it? Imagine if it was that easy when the data on the hard drive was classified or top secret.

Commercial SSDs use basic ATA password to access drive data. Military and government applications require higher security and therefore basic ATA passwords must be strengthened and sophisticated key management techniques employed.  Self-encrypting drives allow for up to 32 character passwords while Mercury drives 64 characters. One technique is to condition the password.  By this you can create a unique suffix to the end of a password that changes with each log-in, making the password impossible to hack.
Read More

Modular RF Architectures

Let’s start with the traditional approach. After spending the morning helping production with some tuning on an amplifier, you finally start reading through the 120-page RFP, SCD, and SOW for the new up-converter. At the end of the source control drawing there is an oddly shaped mechanical outline. The control signal is routed through a hermetic mico-D connector with a custom defined pin-out. While not ideal, the locations of the RF ports are manageable. The eight-month timeline to CDR appears reasonable. However, six months in and it becomes clear that it will take longer and cost more than anticipated. The back and forth iterations with the engineer supporting the custom designed digital control board seem to go on forever. The engineer working on the output module determines that she will need a new heat-sink to keep the devices from becoming too hot. The mixer is generating a spur that wasn’t predicted and somewhere a gain stage is oscillating. The frustrated program manager has to add this project to the long list of development jobs with irate customers.

Read More

Hypervisor- Virtual Machine

Hypervisor Part 2

Welcome back!

Today we will look at Full Virtualization, using either Software assisted full or Hardware assisted full.

Full Virtualization:
Virtual machine simulates hardware to allow an unmodified guest OS to be run in isolation. There are two types of Full virtualizations in the enterprise market. On both full virtualization types, the guest operating system’s source information will not be modified.
• Software assisted full virtualization
• Hardware assisted full virtualization

Software Assisted Full Virtualization:
Software-assisted full virtualization completely relies on binary translation to trap and virtualize the execution of sensitive, non-virtualizable instructions sets. It emulates the hardware using the software instruction sets. Due to binary translation, it is often criticized for performance issue. Here is the list of software which will fall under software assisted (BT).

• VMware workstation (32Bit guests)
• Virtual PC
• VirtualBox (32-bit guests)
• VMware Server

Hardware Assisted Full Virtualization:
Hardware-assisted full virtualization eliminates the binary translation and it directly interrupts with hardware using the virtualization technology which has been integrated on X86 processors since 2005 (Intel VT-x and AMD-V). Guest OS’s instructions might allow a virtual context execute privileged instructions directly on the processor, even though it is virtualized.
Here is the list of enterprise software which supports hardware-assisted – Full virtualization which falls under hypervisor type 1 (Bare metal).

• VMware ESXi /ESX
• Hyper-V
• Xen

The following list fall under hypervisor type 2 (Hosted).
• VMware Workstation (64-bit guests only )
• Virtual Box (64-bit guests only )
• VMware Server (Retired )

Here’s a great write up explaining Para virtualization vs Full virtualization vs Hardware assisted Virtualization in more detail.

Stay tuned for Part 3 of the Hypervisor blog!

AES256bit encryption

Military-Grade Secure Solid State Drives Part 2: Encryption Decoded

In my introduction to military grade SSDs I conjured an image from a familiar movie of a data recorder destroyed by internal combustion to remove evidence of high value data. While the end result is the same, the implementation of self-destruct in the real world can be a bit different than in Hollywood.  In military-grade solid state drives, self-destruction of data or a data storage device happens through sophisticated non-thermal events. Advanced algorithms are used to erase encryption keys, non-volatile NAND flash memory, and controller firmware.  Other mechanisms can be employed to wipe the drive by high powered magnetic exposure. In these scenarios the data and device will be rendered useless with no chance of reverse engineering, but no flames or bodily harm will ensue. Read More

Innovative RF Engineering Teams

In this series of blog posts I will explore various topics in the growing space that is the intersection of the commercial communications industry and the RF/Microwave defense industry. Gone are the days of plentiful cost-plus, multi-year development contracts and in their place we find an emerging competitive landscape. Nimble, technology-focused companies are taking the tools ubiquitous in the fast-paced world of commercial businesses and applying them to a new set of challenges found in the defense and aerospace industries. Just as commercial communication standards fueled rapid growth by allowing the re-use of modular components, disruptive companies are now working to apply these same methods to the RF defense industry. However, to be successful is no easy task. With a much smaller available market, these innovative companies need a thorough understanding of current and future market trends in order to define their technology road-map. We are now in a critical time for the defense industry with massive growth opportunities for innovative companies and a slow decline for those who fail to adapt.

It’s become a common story throughout the RF defense industry. The same conversations are heard in the lunch room, whispered in cubicles and discussed over dinner after a conference. The subject matter experts are retiring. Other engineers are leaving to build the next smartphone app. It’s becoming harder and harder to recruit the next generation of engineers with competition from companies like Google and Facebook. The once cutting-edge RF/microwave design houses are limping along by making minor updates to legacy programs, and in the process, keeping their limited engineering resources busy with paperwork.

Read More

Security hypervisor

Hypervisor – Part 1

The Engineers in Mercury’s SMP department have been adding to Mercury’s many capabilities and offerings on both Mercury’s 6U and 3U product lines. I will be featuring some of these over the next few weeks and months to show the commitment and ingenuity that our engineers have for our customers’ needs. One of these capabilities is the availability of Hypervisor. Development, Quality and Test Engineers have been looking for this type of capability on these platforms for a long time. With this product, you are able to control the level of security, isolation, authentication and protection to critical software, hardware and components within your system. You determine what level, depending on your or your customer’s needs. Read More