RF & Microwave

Electronic Attack: An Overview of Electronic Warfare Part 4

Who remembers that scene in the movie Spaceballs where Lone Starr jams the enemy radar using raspberry jam, causing it to lose the “bleeps, the sweeps, and the creeps”? While Mel Brooks does show what electronic warfare can do, the details aren’t exactly accurate. In this post, we will clear up some of these details in our discussion on electronic attack.

M. B. (Director). (1987). Spaceballs. United States: MGM.

Read More

Key Takeaways from the 55th Annual AOC Symposium and Conference

Sometimes it’s hard to believe how quickly technology progresses. It’s only been about a decade since Steve Jobs announced the first iPhone. And today, between checking email, navigating to a new restaurant, sharing photos with family and turning the lights on or off in my kid’s room, it’s hard to image life without a smart phone.

Let’s go back in time to the year 1992—about 15 years before the iPhone and the beginning of the Joint Strike Fighter program. While the earliest prototypes flew in late 2000, it wasn’t until 2006 that the F-35 had its first test flight. Then, in 2011, almost two decades after the program began, the first production aircraft rolled off the assembly line. While this was a very long development time when compared to smart phones, no one would trust a smart phone with their life. That said, the digital revolution of the last decade is finding its way to the electronic warfare (EW) industry, and it’s forcing us to change how we deploy EW systems.

This new and continually changing reality was on everyone’s mind at the recent AOC Symposium and Conference held in Washington, DC. The symposium theme, “Winning the Electromagnetic Spectrum Domain: A Culture and Mind Shift”, captured the sentiment clearly.

Read More

RF & Microwave

Electronic Support: An Overview of Electronic Warfare Part 3

“They have a missile-lock on us!” is a phrase we’ve heard countless times in movies and is usually a sign that a radar-guided missile is incoming. Ever wonder how the aircraft’s systems detect this type of threat? In this post, we’ll discuss how a radar warning receiver provides information on an adversary’s radar, as well as some general information on electronic support. Before we get into the details, I recommend reviewing the two previous posts for a brief background of the history of electronic warfare and an overview of radar.

What is Electronic Support?

Electronic support (ES) is the set of technologies and methods designed to receive and analyze an adversary’s transmissions of electromagnetic signals. This includes locating the sources of radar signals as well as identifying the adversary’s communication signals.

There is crossover between ES and signal intelligence (SIGINT), but the key difference is that ES is more tactical while SIGINT is more strategic. For example, while an ES system might identify an adversary’s communication signal so it can be jammed, a SIGINT system will intercept the transmission for longer-term strategic planning. Additionally, electronic support is less concerned with the content of the signal and instead is focused on the technical details of the transmission itself.

While both ES and SIGINT are critical, this article focuses on electronic support and its objective of improving situational awareness.

Read More

RF & Microwave

Radar Basics: An Overview of Electronic Warfare Part 2

In the first post of this series, we discussed the history of electronic warfare with an emphasis on the back-and-forth competition to develop systems that grant the owner control over the electromagnetic spectrum. When one country develops a new radar system, its adversary starts working on a jammer. In order to mitigate the effects of the jammer, the radar developer then must design a system that protects the radar from those effects.

This invisible battle over control of the electromagnetic spectrum is critical to success on the battlefield and is the topic of the subsequent posts. However, understanding the technology to jam and deceive radar requires an understanding of the radar systems.

We’re all familiar with the applications of radar—that yellow warning light on your mirror telling you someone is in your blind spot, police radar monitoring your speed, images on the news showing the path of a storm. However, for the purpose of understanding electronic warfare, we’ll look at the types of radar in three main groups.

Read More

RF & Microwave

The History of Electronic Warfare: An Overview of Electronic Warfare Part 1

It was May 24, 1844 when Samuel Morse transmitted his famous telegraph message “What hath God wrought” from Washington to Baltimore. Twenty years later, the U.S. Military Telegraph Corps had trained 1,200 operators and strung 4,000 miles of telegraph wire, which increased to over 15,000 miles by the end of the Civil War. While long-distance communication proved a significant advantage for the Union armies, it also opened the door for wiretapping. It was these early experiences that demonstrated the impact of surveillance and set the foundations of electronic warfare (EW).

Over the last century, electronic warfare has had an increasing role in shaping the outcomes of conflicts across the globe; however, few people appreciate its significance and fewer still understand the technology. In this first post of our electronic warfare blog series, we present a brief history of the technology behind electronic warfare. Just as older cars are more intuitive to repair, the early EW systems are easier to understand.

Read More

RF Engineers Co-op Program

The Next Generation of RF Engineers

Along with the warm weather and long days, summer means a new group of co-ops. Here at Mercury Systems, where innovation drives each subsequent generation of new products, we depend on our high-performing engineering teams, and one critical element behind developing these teams is our co-op program.

When it comes to RF, there is so much theory to learn in school that there is often less opportunity to apply that theory to specific RF/microwave design challenges. Spending a summer working through actual designs and troubleshooting in the lab kicks off the process of developing the intuition and experience critical to becoming a successful engineer. At Mercury we take that one step further by putting co-ops to work on real projects where their contributions make a measurable impact on the final product.

Read More

Lessons in RF Manufacturing from a Chicago Sausage Factory

People often say RF is black magic and it sometimes feels that way. I remember one evening I was called down to the production floor to help troubleshoot a technical problem found during swing shift. There was a product going through final test and it would only pass if held at a certain angle. At first I was doubtful that this was the case, but I held it in my hands, watched the performance on the network analyzer, rotated the unit, and saw the performance degrade. First we suspected the VNA cables, but a golden unit was solid regardless of its orientation. Then we performed the standard “shake while listening for something rattling test” but couldn’t hear anything—plus the repeatability seemed to suggest it wasn’t due to FOD. X-ray imaging didn’t yield any clues. Eventually, we had to send it off to de-lid, found nothing wrong, and after real-seal the performance was stable. The best theory we had was that the problem was due to flux improperly cleaned from a feedthrough.

It was this type of problem that drew me to RF engineering in college. Circuits that only worked when you placed a finger in a certain spot. The gain reduced by the microscope light. While it felt like black magic we all knew that in reality it was physics too complicated to be fully modeled. To this day, I still find these problems fun until all of a sudden a revenue commitment is missed.

Read More

Swap Optimized RF

Smaller, Faster & More Affordable

During a Saturday afternoon of closet organizing, I found my first laptop from 2002—a Dell Inspiron 8200. I remember paying a premium—over $2,000 I think—for the Pentium 4 processor and the 256MB of RAM. It required 4.5A at 20V (90W) and weighed 8 pounds 3 ounces, which is just slightly less than the current weight of my two-week-old daughter. While organizing my closet, I was also listening to a podcast on my $250 phone that easily fits into my pocket and is far more powerful than the old laptop.

Both consumers and defense primes are demanding increased performance, in smaller packages, at lower prices. We have come to expect this level of improvement in each new smartphone generation. Addressing new emerging threats in the defense space requires a similar advancement. In this third post of my series on the intersection of the RF commercial and defense industries, we will examine the need for products that are smaller, more capable, and less expensive. Packing more circuitry into smaller areas is no easy task and to be successful, a company must embrace innovation and modular design—the subjects of my first and second posts in this series. This applies to designing a smart phone or a radar system.

Read More

IMS 2018

IMS 2018 Re-Cap

It was a week of cheese steaks, US history, and ten thousand RF and microwave professionals. The International Microwave Symposium, or IMS, is an annual event that brings together the latest research from academia, hundreds of companies, and presentations from the most knowledgeable experts. This year we all gathered in downtown Philadelphia to learn what’s new in the industry.

Read More

Modular RF Architectures

Let’s start with the traditional approach. After spending the morning helping production with some tuning on an amplifier, you finally start reading through the 120-page RFP, SCD, and SOW for the new up-converter. At the end of the source control drawing there is an oddly shaped mechanical outline. The control signal is routed through a hermetic mico-D connector with a custom defined pin-out. While not ideal, the locations of the RF ports are manageable. The eight-month timeline to CDR appears reasonable. However, six months in and it becomes clear that it will take longer and cost more than anticipated. The back and forth iterations with the engineer supporting the custom designed digital control board seem to go on forever. The engineer working on the output module determines that she will need a new heat-sink to keep the devices from becoming too hot. The mixer is generating a spur that wasn’t predicted and somewhere a gain stage is oscillating. The frustrated program manager has to add this project to the long list of development jobs with irate customers.

Read More